
MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master’s Thesis

‘Estimating Water Transfer during Planetary Formation
using Interpolated Results from SPH Collision Catalogues’

verfasst von / submitted by

Lukas Winkler, BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

Wien, 2022 / Vienna, 2022

Studienkennzahl lt. Studienblatt / UA 066 861
degree programme code as it appears on
the student record sheet:

Studienrichtung lt. Studienblatt / Masterstudium Astronomie
degree programme as it appears on
the student record sheet:

Betreut von / Supervisor: ao. Univ.-Prof. i.R. tit. Univ.-Prof. Dr. Rudolf Dvorak

Contents

Abstract 3

Zusammenfassung 3

1 Introduction 4

2 SPH-based collision simulation 6

3 Simulation Setup 8
3.1 Initial Conditions . 8
3.2 N-Body Integrator . 9

3.2.1 Hybrid Integrator . 10
3.2.2 Ejections and Solar Encounters . 11
3.2.3 Radii . 12

3.3 Collision Handling . 12
3.4 Output Management . 14

3.4.1 Reproducibility . 14
3.5 Scenarios . 15

4 Mass Loss Estimation 16
4.1 Perfect Merging . 16
4.2 Randomized Mass Loss . 16
4.3 RBF-based Mass Loss Estimation . 17
4.4 Neural Network Mass Loss Estimation . 19

5 Results 22
5.1 Randomized Mass Loss . 31

6 Discussion and Conclusions 33
6.1 Data Availability . 34
6.2 Conclusions . 34

Acknowledgements 35

List of Figures 36

List of Tables 36

List of Code Fragments 37

Abbreviations 38

Bibliography 38

2

Abstract

Abstract

To understand how water came to Earth, we need to better understand the late stage of terrestrial
planetary formation. Many N-Body simulations were run in the past describing the mass and water
transport and accretion of mass when smaller planetesimals and protoplanetary embryos collide to form
the final planets. One major detail that is only considered more accurately recently is the fact that
during these collisions mass is lost into space, which affects the final mass and water content of the
solar system. But often this is neglected in favour of assuming bodies merge perfectly without mass
loss. In this thesis, we propose two alternative methods to estimate this mass loss without having to
simulate the physical collision in high resolution by using an existing dataset of collision outcomes. We
run a total of 98 N-Body simulations implementing these water loss estimation methods in addition
to a randomized mass loss and assuming perfect merging. When comparing our results with existing
research, we can reproduce most effects compared to more complex mass loss setups. When considering
mass loss, final bodies are less massive and contain significantly less water. In addition, our methods
implicitly takes into consideration that earlier collisions are less impactful and shows that most water is
accreted in a small number of later collisions. Finally, we confirm that without considering Hit-and-Run
collision scenarios, the duration of terrestrial planetary formation cannot be accurately modelled.

Zusammenfassung

Um zu verstehen, wie Wasser auf die Erde gekommen ist, brauchen wir ein besseres Verständnis
der Spätphasen der Planetenentstehung. Viele N-Body Simulationen wurden in der Vergangenheit
durchgeführt um den Massen- und Wassertransport und den Massenzuwachs, wenn protoplanetare Körper
miteinander kollidieren, um die finalen Planeten zu bilden, besser zu beschreiben. Ein grundlegendes
Detail, welches erst vor kurzem genauer betrachtet wurde, ist, dass während Kollisionen Masse in den
Weltraum verloren geht, was die Masse und den Wasseranteil des fertigen Sonnensystems beeinflusst. Dies
wird aber oft vernachlässigt und stattdessen eine perfekte Kollision ohne Massenverlust angenommen.
In dieser Arbeit stellen wir zwei alternative Methoden vor, um diesen Massenverlust abzuschätzen
ohne die physikalischen Details der Kollision in hoher Auflösung simulieren zu müssen. Hierzu
verwenden wir ein existierendes Datenset an Kollisionsergebnissen und implementieren damit die
Wasserverlustabschätzungsmethoden zusätzlich zu Perfect Merging und einem zufälligen Massenverlust.
Wenn wir das Ergebnis unserer 98 N-Body Simulationen mit existierenden Ergebnissen vergleichen,
können wir die meisten Effekte aus komplexeren Simulations-Setups reproduzieren. Wenn Massenverlust
berücksichtigt wird, sind die gebildeten Planeten masseärmer und enthalten weniger Wasser. Außerdem
berücksichtigt unsere Methoden implizit, dass frühere Kollisionen schwächer sind und zeigen, dass das
meiste Wasser in wenigen späten Kollisionen auf Planeten kommt. Zuletzt können wir bestätigen,
dass ohne Berücksichtigung von Hit-and-Run Kollisionsszenarien die Dauer der Bildung terrestrischer
Planeten nicht zuverlässig bestimmt werden kann.

3

1 Introduction

The source of water on Earth and the processes that caused water to end up in the inner parts of the
solar system are two of the major questions in planetary formation. During the early stages of the
solar system, the innermost parts were too hot for water to condense into ice (Hayashi 1981). While
the exact position of this so-called snowline (the border where water ice could form) varies depending
on the model (Podolak and Zucker 2004 indicates a minimum radius of 3.2AU), the earth’s orbit was
most likely inside the area where solid water ice was not possible (unless other effects like in Martin
and Livio 2012 make ice close to the sun possible). This means water must have moved inside during
later stages of planetary formation. While comets were originally thought to be a large source of water
(Oró 1961; Owen and Bar-Nun 2001), observations of 67P/Churyumov-Gerasimenko indicated that their
isotope signature does not match the one from Earth’s water (Rubin et al. 2015). In addition, dynamical
studies like Morbidelli et al. 2000 show that only a small fraction of Earth’s current water mass can
come from asteroids. Instead, the majority is accreted in planetary embryos which transferred it to
Earth via collisions in the late stages of formation.

To describe this process of collision between planetary embryos during the later stages of planetary
formation and the water transfer that is caused by it, numerical N-Body simulations like those in O’Brien,
Morbidelli and Levison 2006 are set up. In these, a stage in the planetary formation is considered, where
Jupiter and Saturn are on their current orbits (or a circular orbit). The solid mass is split up into a
smaller number of more massive planetary embryos and a larger number of smaller planetesimals. An
N-Body integrator like MERCURY (Chambers 1999) is then used to simulate the orbital dynamics over
200 million years, during which the bodies will collide and more massive planets form. One limitation
of this approach, especially when focusing on water transport, is that collisions are mostly modelled
by perfect merging in inelastic mergers, where the linear momentum is conserved, but all mass of the
colliding bodies remains in the newly formed body (Izidoro, Morbidelli and Raymond 2014; O’Brien,
Morbidelli and Levison 2006; Raymond, Quinn and Lunine 2006). This is a reasonable approximation
for low impact collisions, but as we will see later on, stronger collisions are common. The assumption of
perfect merging will always overestimate the amount of mass (especially water mass) remaining after a
collision which also influences the amount of (water) mass remaining in the final bodies. In this thesis,
we will be looking at various methods on how collisions can be handled more realistically.

In Leinhardt and Stewart 2012; Stewart and Leinhardt 2012, a collection of collisions is simulated using
the high resolution N-Body integrator PKDGRAV1. The resulting remnants are analysed and used to group
the collisions as perfect merging, partial accretion, net erosion, hit-and-run and graze-and-merge. Also
scaling laws are derived and used to create an algorithm on how to handle collisions, that is further
improved in Mustill, Davies and Johansen 2018. The major difference of this approach to everything
else in this thesis, is that the bodies used had a radius of 10 km and a mass of 4.2 · 1015 kg. They are
therefore many orders of magnitudes smaller, which isn’t representative of the bodies in the final stages
of planetary formation.

Another much newer work that is closer to this scenario is Cambioni, Asphaug et al. 2019, in which 769
collisions are simulated using Smoothed Particle Hydrodynamics (SPH). The simulations outcomes are
then used to train two separate neural networks. One of them tries to predict collision outcomes such as
the masses of the remnants from the impact parameters in a similar way as described in Section 4.4.
The other network tries to classify the type of collision scenario. Emsenhuber et al. 2020 improves this

1https://faculty.washington.edu/trq/hpcc/faculty/trq/brandon/pkdgrav.html, Stadel 2001

4

https://faculty.washington.edu/trq/hpcc/faculty/trq/brandon/pkdgrav.html

1 Introduction

method by adding a third network that predicts the orbital parameters of the two remnants in case
of a hit-and-run scenario. And the latest work in Cambioni, Jacobson et al. 2021 further expands this
method to focus more precisely on the planetary composition.

But while all methods described until now greatly improve how the collision process is modelled and
therefore give much more accurate results than just assuming perfect merging, they don’t include water
ice mantles in their models and can therefore not give any information on how these processes affect the
water transport in the late stage planetary formation. This changes with Burger, Bazsó and Schäfer
2020 (henceforth cited as ChB), in which all bodies consist of an iron core, a basalt mantle and a water
ice shell. While the initial conditions are similar to the previously mentioned works, the major difference
is that for every collision of two bodies, the N-Body integration is halted, and a dedicated SPH-based
simulation of the collision is started (as will be explained in Section 2). These results are then used to
resolve the collision and continue the N-Body integration.

Another similar paper is L. Zhou, Dvorak and L.-Y. Zhou 2021 (henceforth cited as ZhL), which replaces
the estimation of the mass loss of the three materials during collisions with a random value in a predefined
range, while still more realistically reducing the masses of bodies than assuming perfect merging. See
Section 4.2 for more details on this method.

Yet another very recent work is Haghighipour and Maindl 2022 which also argues that perfect merging
is not an acceptable approximation when simulating planetary formation. For this the authors show
that the mass losses in each simulation accumulate and affect the final planets’ mass strongly.

In this thesis, we will describe our own N-Body simulation setup based on the ideas of ChB and using
the REBOUND package of integrators (Rein and Liu 2012). Then, we will introduce two new mass loss
estimation methods that are using the dataset of collisions from ChB to instantaneously estimate a
realistic mass loss and compare their impact on the formed planets with simulations assuming perfect
merging and the results from ChB and ZhL.

Chapter 2 introduces the high-resolution SPH-based collision simulation used in ChB. Chapter 3 explains
the setup of our N-Body simulations and how ejections and collisions are handled in them while Chapter
4 focuses on the two new mass loss estimation methods and how they are implemented together with
perfect merging and our implementation of the method from ZhL. The results of the collection of
simulations are then shown in Chapter 5 and are discussed and compared in more detail in Chapter 6.

5

2 SPH-based collision simulation

In order to accurately predict the outcome of collisions between large bodies, we need to be able to
accurately resolve their interactions in a high resolution. One method that allows us to model the two
bodies using a large amount of particles is using 3D Smoothed Particle Hydrodynamics (SPH). This way
we can look at a specific collision between two bodies with a set of initial conditions, let them collide
and afterwards observe the physical properties of the remnants. SPH has already been used before to
estimate collision outcomes as mentioned in the introduction. This thesis uses the outcomes from ChB
which are described together with their simulation setup in the following and are based on the work in
Burger, Maindl and Schäfer 2018.

ChB uses the SPH code miluphcuda2 (Schäfer, Riecker et al. 2016; Schäfer, Wandel et al. 2020) which
uses CUDA to parallelize the calculations on GPUs. miluphcuda allows simulating the collision of two
bodies using 20 000 to 75 000 SPH particles depending on the mass ratio between them. Both bodies are
made of an iron core, a basalt stone mantle and a water-ice shell with material properties from Melosh
1989 for iron and Benz and Asphaug 1999 for basalt and ice. They are already in a relaxed state to
avoid inaccuracies during the collision.

The primary input parameters for the simulations are the impact velocity vesc in units of the mutual
escape velocity, the impact angle α, the projectile and target masses and the water and core mass
fractions of both bodies. The main output values of the simulations are the masses of the largest and
second-largest object3 and the water and core mass fractions of the largest two bodies. These parameters
can be seen again in Section 4.3 when we try to replace these simulations with interpolated results.

The dataset used in this thesis consists of the export of 10 000 individual collisions from 49 N-Body
simulation runs. A very small fraction of collisions had values that could not be used, leaving a remaining
dataset of 9977 collisions outcomes with their corresponding collision parameters. We can take a very
general look at it by calculating the Pearson correlation coefficient between the input parameters and
the water mass fraction to see which parameters influence water loss most (Figure 2.2). As expected
collision speed and impact angle matter most, with the masses and mass fractions between the two
objects also having an influence on the result. The water mass fraction of the two bodies does not have
a significant impact on the percentage of water that is lost during the collisions.

2The code is available at https://github.com/christophmschaefer/miluphcuda.
3This is done by using a friends-of-friends algorithm to group the particles into fragments and aggregate the masses of

gravitationally bound fragments onto each other.

6

https://github.com/christophmschaefer/miluphcuda

2 SPH-based collision simulation

Figure 2.1: A snapshot of an SPH simulation like the ones used here. The colour indicates the velocity
in the direction of the collision.

0.6 0.4 0.2 0.0 0.2 0.4

impact angle

 collision speed v

projectile mass

mass fraction

target water fraction

projectile water fraction

(0.41)

(-0.64)

(0.11)

(-0.35)

(0.06)

(-0.02)

Figure 2.2: The Pearson correlation coefficient between the input parameters and the water mass fraction.

7

3 Simulation Setup

3.1 Initial Conditions

To keep the results of the simulation comparable with ChB, the initial conditions of the N-Body
integration are kept as similar as possible. The same script is used to generate them and deviations in
the parameters are described in the following.

The simulation starts with an initial debris disk consisting of both planetary embryos and planetesimals
orbiting around the sun during the late-stage accretion phase of terrestrial planet formation. Both of
them together follow a disk profile starting at 0.5AU and ending at 4.0AU with the surface density Σ
described in (3.1). The total solid mass in the disk is around 5M⊕.

Σsolid(r) = Σ0

(r

1AU

)−α

(3.1)

α = 1.5 (3.2)

Σ0 = 1.125 · 10−6 M�/AU2 = 10
g

cm2
(3.3)

The embryos are the more massive population and make up 70% of the total mass. They are placed
10 times their mutual hill radii (3.4) away from each other with a and m being their semi-major axes
and masses, respectively, and M0 being the mass of the central star. The mass of the embryos is the
isolation mass Miso which describes the mass available in the annulus between two particles (3.5). With
these conditions, around 34 planetary embryos are generated.

RH =
a1 + a2

2

(
m1 +m2

3M0

) 1
3

(3.4)

Miso = 2πabΣsolid(a) (3.5)

The remaining 30% of the mass is assumed to have not yet been accreted and is split up into 250
planetesimals. This results in each of them having a mass of around 4.85 · 1022 kg (≈ 50MCeres ≈
0.66MMoon). This is about an order of magnitude less than the mass of the embryos which ranges from
3.42 · 1023 kg to 1.43 · 1024 kg.

With the mass m and semi-major axis a of all bodies defined, the eccentricities and inclinations of all
bodies are distributed in a Rayleigh distribution (Code Fragment 3.1 shows the parameters for embryos4).
The remaining orbital parameters are uniformly distributed between 0◦ and 360◦.

The water mass fraction (WMF) of the disk bodies follows the relation from Raymond, Quinn and
Lunine 2004 as shown in (3.6). This splits the solar system into a water-rich outer part and a water
poor inner region with an intermediate in-between (Figure 3.1). The core mass fraction (CMF) is set to
a fixed value of 0.25, with the mantle mass fraction (MMF) making up the rest of the bodies’ mass.

4They are called ‘minor bodies’ in the code generating the initial conditions.

8

3 Simulation Setup

286 # eccentricities

287 ecc = np.random.rayleigh(0.0005, n_minor)

288 # inclinations [rad]

289 inc = np.random.rayleigh(0.05 * deg2rad, n_minor)

290 # arguments of perihelion [rad]

291 aph = np.random.uniform(0.0, 2.0 * np.pi, n_minor)

292 # longitudes of ascending node [rad]

293 lan = np.random.uniform(0.0, 2.0 * np.pi, n_minor)

294 # mean anomalies [rad]

295 man = np.random.uniform(0.0, 2.0 * np.pi, n_minor)

Code Fragment 3.1: initcon/InitCondGen.py:286-299 (simplified)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
a [AU]

0.00

0.01

0.02

e

5 4 3 2 1 0
log(water mass fraction)

Figure 3.1: Minor bodies in first set of initial conditions (see Section 3.5).

WMF =

10−5 a < 2AU
10−3 2AU ≤ a < 2.5AU
0.05 2.5AU ≤ a

(3.6)

In addition to the around 284 bodies described here, we add a central star with the properties of the
sun, and Jupiter and Saturn with their current orbits, but their eccentricities set to 0, so identical to the
circular orbits in the cJS scenarios in ChB and similar to the Nice Model (Tsiganis et al. 2005).

3.2 N-Body Integrator

To integrate the N-Body interactions between the bodies in the system, the REBOUND package of integrators
(Rein and Liu 2012)5 is used, which bundles multiple integrators and other useful tools in one easily
extensible package which can be used in Python. The hybrid integrator MERCURIUS (Rein, Hernandez
et al. 2019) is chosen as a compromise between runtime and physical accuracy. It uses the fast symplectic
integrator WHFAST (Rein and Tamayo 2015) for the main calculation of the gravitational interactions
between bodies, but uses a switching function inspired by MERCURY (Chambers 1999) to change to the
non-symplectic integrator IAS15 (Rein and Spiegel 2015) with an adaptive timestep whenever two bodies
come close to each other. This allows to resolve collisions between bodies accurately, while at the same
time benefiting from the faster integration time of WHFAST. To drastically speed up the run time of the
simulation by reducing the number of N2-Interactions, planetesimals are not interacting with each other,

5The source code of REBOUND can be found at https://github.com/hannorein/rebound.

9

https://github.com/hannorein/rebound

3 Simulation Setup

only with other embryos, gas giants and the sun, while planetary embryos are gravitationally interacting
with all other bodies. This is equivalent to the pp0 scenarios from ChB which seem to achieve nearly the
same results as scenarios with planetesimal interaction (pp1).

The time step of WHFAST is set to 0.01 years = 3.65days while at the same time care is taken that no
body has an orbital period of below 20 timesteps (this factor will be called S in Section 3.2.2). Every
simulation is run for 200Myr with intermediate results being saved every 20 000 years (see Section 3.4).

3.2.1 Hybrid Integrator

One of the most important parts of the N-Body setup is the switching between the fixed-timestep
symplectic integrator and the adaptive timestep integrator, as it ensures the accuracy of the collision
handling. This is handled in MERCURIUS (Rein, Hernandez et al. 2019) by the (force) switching function L
which determines which method is used depending on the distance of two bodies r in units of the critical
distance rcrit. This critical distance depends on a few parameters (Code Fragment 3.2), but mostly is
rim->-hillfac times the Hill radius. This factor is set to the REBOUND default of 3 in all simulations.

416 double dcrit = 0;

417 /// Criteria 1: average velocity

418 dcrit = MAX(dcrit, vc*0.4*r->-dt);

419 /// Criteria 2: current velocity

420 dcrit = MAX(dcrit, sqrt(v2)*0.4*r->-dt);

421 /// Criteria 3: Hill radius

422 dcrit = MAX(dcrit, rim->-hillfac*a*cbrt(r->-particles[i].m/(3.*r->-particles[0].m)));

423 /// Criteria 4: physical radius

424 dcrit = MAX(dcrit, 2.*r->-particles[i].r);

Code Fragment 3.2: REBOUND: main/src/integrator_mercurius.c:416-424 (1074be9583)

The actual switching function L is then calculated according to (3.7) with y being defined in (3.8), which
is the same as in MERCURY (Chambers 1999) and implemented as shown in Code Fragment 3.3.

Lmerc(r) =

0 y ≤ 0

10y3 − 15y4 + 6y5 0 < y < 1

1 y ≥ 1

(3.7)

y =
r − 0.1rcrit

0.9rcrit
(3.8)

44 double reb_integrator_mercurius_L_mercury(const struct reb_simulation* const r, double d, double dcrit){

45 /// This is the changeover function used by the Mercury integrator.

46 double y = (d-0.1*dcrit)/(0.9*dcrit);

47 if (y<0.){

48 return 0.;

49 }else if (y>1.){

50 return 1.;

51 }else{

52 return 10.*(y*y*y) - 15.*(y*y*y*y) + 6.*(y*y*y*y*y);

53 }

54 }

Code Fragment 3.3: REBOUND: main/src/integrator_mercurius.c:44-54 (1074be9583)

Using MERCURIUS instead of manually switching between the two integrators is one of the more significant
differences in this work compared to ChB.

10

https://github.com/hannorein/rebound/blob/1074be9583/src/integrator_mercurius.c
https://github.com/hannorein/rebound/blob/1074be9583/src/integrator_mercurius.c

3 Simulation Setup

3.2.2 Ejections and Solar Encounters

At the beginning of the simulation, the innermost body has a semi-major axis of 0.5AU. This means
that according Kepler’s third law, it has an orbital period of 0.35 yr6, which means that with a timestep
of 0.01 yr, more than the targeted 20 (= S) timesteps are used to resolve one orbital period.

But the orbits do not stay that way and due to collisions and other influences, orbital bodies will get
thrown on orbits that are closer to the sun (without necessarily colliding with it). This means that
we either simulate our system with a timestep that is too high to accurately resolve it, resulting in
an inaccurate simulation, or we will use IAS15 for the majority of the simulation time and loose the
performance of the non-symplectic integrator.

The solution for this problem is ignoring objects that come too close to the sun (closer than acutoff) and
assuming they have merged with the sun instantaneously.

acutoff = (∆t · S) 2
3 = 0.20

2
3 ≈ 0.34AU (3.9)

This is implemented using a C function that is called on every timestep. Every 100 timesteps, it checks
if any body is too close to the sun and deletes it. This is done by both comparing the current distance
and the perihelion distance (Code Fragment 3.4). The same method also allows us to check for bodies
that have been ejected from the system (more than 150AU from coordinate origin) at the same time,
remove them and record this separately. Additionally, bodies are sometimes scattered outside the inner
system to perihelion distances beyond 11AU, but are not immediately getting unstable enough to be
removed by the other two checks. Therefore, they are also removed by an explicit third check, so they
don’t slow down the simulation.

1 void heartbeat(struct reb_simulation *sim) {

2 if ((sim->-steps_done % 100) === 0) {

3 const struct reb_particle *const particles = sim->-particles;

4 int N = sim->-N - sim->-N_var;

5 for (int i = 1; i < N; i+++) { /// skip sun

6 struct reb_particle p = particles[i];

7 double distance_squared = p.x * p.x + p.y * p.y + p.z * p.z;

8 struct reb_orbit tmp_orbit = reb_tools_particle_to_orbit(sim->-G, p, sim->-particles[0]);

9 double perihelion_dist = tmp_orbit.a * (1.0 - tmp_orbit.e);

10 if (distance_squared > max_distance_from_sun_squared) {

11 reb_remove_by_hash(sim, p.hash, 1);

12 } else if (distance_squared < min_distance_from_sun_squared |||

13 (tmp_orbit.e < 1.0 &&&

14 perihelion_dist * perihelion_dist <

15 min_distance_from_sun_squared)

16) {

17 reb_remove_by_hash(sim, p.hash, 1);

18
19 /// add mass of deleted particle to sun

20 struct reb_particle sun = sim->-particles[0];

21 sun.m += mass;

22 } else if (tmp_orbit.e < 1.0 &&& perihelion_dist > 11.) {

23 reb_remove_by_hash(sim, p.hash, 1);

24 }

25 /// [.....] (store information and synchronize integrator)

26 }

27 }

28 }

Code Fragment 3.4: heartbeat/heartbeat.c (simplified)

6=

√(
0.5 AU
1 AU

)3
1 yr

11

3 Simulation Setup

3.2.3 Radii

We consider a collision between two bodies if they come closer than the sum of their radii and are
therefore touching each other. But for this to work, we need to estimate the radius of all our bodies.
The approach used is a simplified one, which allows an easier implementation. All three layers of the
bodies are assumed to be made of a uniform density of iron (ρ = 7800 kg

m3) , basalt (ρ = 2700 kg
m3) and

ice (ρ = 917 kg
m3)7. This is not true in reality as the bodies are in a hydrostatic equilibrium and the SPH

simulations consider this by running a relaxation procedure (as described in Appendix A. of Burger,
Maindl and Schäfer 2018) before the start of the simulation. This simplified assumption makes it very
easy to assign a radius to every body in the simulation by following equations (3.10), (3.11) and (3.12)
as implemented in Code Fragment 3.5.

Rcore = 3

√
mcore

ρiron

3

4π
(3.10)

Rmantle = 3

√
mmantle

ρbasalt

3

4π
+R3

core (3.11)

R = 3

√
mshell

ρice

3

4π
+R3

mantle (3.12)

1 class PlanetaryRadius:

2 # [.....]

3 @property

4 def core_radius(self) ->- float:

5 return (self.core_mass / self.iron_density * 3 / 4 / pi) *** (1 / 3)

6
7 @property

8 def mantle_radius(self) ->- float:

9 return (self.mantle_mass / self.basalt_density * 3 / 4 / pi + self.core_radius *** 3) *** (1 / 3)

10
11 @property

12 def total_radius(self) ->- float:

13 return (self.shell_mass / self.ice_density * 3 / 4 / pi + self.mantle_radius *** 3) *** (1 / 3)

Code Fragment 3.5: utils/radius.py (simplified)

3.3 Collision Handling

The direct collision detection module (REB_COLLISION_DIRECT) of REBOUND is used to detect whenever two
bodies collide with each other. It is a simple O(n2) search that after every timestep checks the distance
from every body to every other body to see if they overlap. If this is the case, collision_resolve will
be called, for which we provide a custom Python function.

Besides the simulation object, the function also gets passed the particle indices of the two involved
bodies. As collision.p1 and collision.p2 are assigned randomly, the first step is to name the more
massive body ‘target’ and the other body ‘projectile’. This makes sure that we can later on assume that
the mass fraction γ =

Mprojectile
Mtarget

is always below 1. Also, the resulting body will always continue to be of
the same ‘type’ (‘star’, ‘gas giant’, ‘embryo’ or ‘planetesimal’) as the target of the collision.

With the position and velocity vectors and the masses of the two bodies we can calculate the collision
angle α using (3.13), the impact velocity vesc in units of the mutual escape velocity using the escape

7The same materials and densities as in the SPH simulations are used here.

12

3 Simulation Setup

Figure 3.2: Visualization of a collision with α = 20.29◦, v
vesc

= 1.02 and γ = 0.14.

velocity from (3.14) and the mass fraction γ. An example of a collision that happened during the
simulations can be seen in Figure 3.2. It is important to keep in mind that collision angle α does not
describe the angle between the bodies velocity vectors, but rather how central the bodies hit each other.
α = 0◦ means that it is a perfect hit in the centre of the body, while at α = 90◦ the two bodies are
barely touching each other (Figure 3.3).

α = arccos
(

∆~r∆~v

|∆~r||∆~v|

)
(3.13)

vescape =

√
2G(Mtarget +Mprojectile)

rtarget + rprojectile
(3.14)

γ =
Mprojectile

Mtarget
(3.15)

These three parameters, the projectile mass Mprojectile and the water fraction of the two bodies are then
passed to the mass loss estimation module, which returns the fractions of core (iron), mantle (basalt)
and shell (water ice) mass that is lost during the impact. The different approaches for this estimation
are described in Section 4.

After the estimation, the total mass of core, mantle and shell, each reduced by the mass loss, is merged
into a new body which is given a velocity conserving momentum. Also, the new core and shell mass
fractions of the merged body are recorded, and all properties of the collision are stored for later analysis.

vmerged =
vtargetMtarget + vprojectileMprojectile

Mmerged
(3.16)

As a last step, the colliding body with the lower particle index8 is replaced with the newly formed body
and REBOUND is instructed to delete the other, move all particles in the simulation to coordinates with
the new centre of mass at the origin and synchronize the integrator.

8As we are using both active and semi-active particles (which are last in the particle index), we need to always keep the
object with the lower index (which will always be an active particle, as two semi-active particles cannot collide) to
make sure the collision result stays an active particle.

13

3 Simulation Setup

RT

RP

∆r

∆v

b0

α

Figure 3.3: Visualization of the collision angle α (here α = 60◦), based on Figure 1 in ChB.

3.4 Output Management

To be able to analyse the results easily, it is important to save the state of the simulation in much detail.
REBOUND facilitates this by allowing to write the whole state of the integrator to a file (Rein and Tamayo
2017). This way, we can save 10 000 full snapshots during each simulation run and can afterwards read
the properties of all bodies during the integration, making it easy to plot values like in Figure 5.2a
without explicitly logging these values during the simulation run. In addition to the simulation state, we
are also storing the total energy every 100 years, the initial conditions of the simulation, the additional
properties of each body (water and core mass fractions, type and time of escape or collision with the
sun) and the properties of every collision.

3.4.1 Reproducibility

The outcome of individual simulations is very chaotic as a slightly different outcome in an early collision
can completely change how stable later orbits are. This not only means we need to take a look at the
results of a larger number of simulations to see the influence of our mass loss handling (see Section 3.5),
but also that we need to take care to make the simulation as reproducible as possible in order to allow
comparable test runs. As an example, all water loss methods (apart from the randomized method) need
to always give the same output for the same collision parameters. This also affects collision handling as
while REBOUND randomizes the order of the two particles affected9, we then reorder them and call the
more massive body ‘target’ to always keep the collision outcomes and numbering of child bodies the
same (see Section 3.3 for more details). Also, we make sure bodies get the same IDs in every simulation
run by assigning a global counter which is a number that is incremented for every newly formed body.
All of this assures that while slightly different initial conditions might result in completely different
planets formed, identical initial conditions will always give byte-for-byte identical REBOUND snapshots
and identical output files apart from the wall-time (the amount of time the simulation takes).

In addition, all simulation runs in this thesis were run on the same computer with no dependencies updated
while running them. For these simulations version d2f2ca44d828b3687ffc759ff1f8f9584fac4edb10 and

9This is done to avoid statistical effects in simulations with magnitudes higher numbers of collisions like Saturn’s rings.
10These hashes point at specific versions of the in the version control system used which can be found at https:

//lw1.at/r/masters-thesis-code.

14

https://git.lw1.at/lw1/rebound-collisions/-/tree/d2f2ca44d828b3687ffc759ff1f8f9584fac4edb
https://lw1.at/r/masters-thesis-code
https://lw1.at/r/masters-thesis-code

3 Simulation Setup

1f09310b2efd7a411efb29d0a46adaec07689bf811 of the software created in this thesis were used.

3.5 Scenarios

As the initial conditions are randomized and the collision process is chaotic, a large number of simulation
runs is required to get an accurate picture over the properties of the resulting planets. Contrary to this,
the long simulation run time12 is detrimental to running a large number of simulations (ChB used 20 SPH
and 16 perfect merging simulations split over four simulation setups each). As a compromise between
those two aspects, 40 initial conditions were created as described in Section 3.1 and one simulation
using each mass loss estimation method from Chapter 4 (RBF, NN, LZ, PM) was run for the first 20 initial
conditions. Two of the LZ simulations (7 and 8) failed due to issues unrelated to the code, so there are
only 18 simulations in the LZ dataset. In addition, 20 more simulations were run with the remaining
initial conditions and only the RBF method. To keep comparisons fair even though the RBF set contains
more simulations, a RBF_SM subset is defined consisting only of the first 20 simulation runs.

11This version includes additional fixes for the randomized mass loss method
12The exact run time depends on how fast bodies collide and the number of particles (and therefore N2-interactions)

decreases (Figure 5.2), but averages 139± 20 CPU-hours for the non-LZ scenarios. Due to the fewer collisions in the LZ

scenarios (Section 5.1) these simulations took significantly longer with 380± 64 CPU-hours. The randomized input is
also responsible for a larger spread in this value with the longest simulation taking 557 CPU-hours (about 23 days).

15

https://git.lw1.at/lw1/rebound-collisions/-/tree/1f09310b2efd7a411efb29d0a46adaec07689bf8

4 Mass Loss Estimation

Four different methods for estimating the amount of mass of each of the three materials lost during a
collision are described in this thesis. Their influence on the final simulation outcomes is described in
Section 5.

4.1 Perfect Merging

This is by far the simplest approach to implement as we just assume that no mass will be lost and the
core/mantle/shell mass retention fraction is always set to 1, independent of the collision parameters.
Afterwards these values will be used in the collision handling to calculate the mass and velocity of the
new merged body as described in Section 3.3. Implementing perfect merging this way allows us to
compare the exact same simulation with and without perfect merging and therefore see the impact of
more realistic collision modelling.

6 class PerfectMerging(Massloss):

7 name = "perfectmerging"

8
9 def estimate(self, alpha, velocity, projectile_mass, gamma) ->- Tuple[float, float, float]:

10 return 1, 1, 1

Code Fragment 4.1: massloss/perfect_merging.py:6-10

4.2 Randomized Mass Loss

This method reuses the approach introduced in ZhL. It is similar to the perfect merging approach in that
it works independently of the collision parameters and is very easy to implement. The mass retention
fraction r is estimated as a random number in a defined range, with R being a random float between 0
and 1.

rcore = δlow
core +Rcore(δ

up
core − δlow

core) (4.1)
rwater = δlow

water +Rwater(δ
up
water − δlow

water) (4.2)
rmantle = rcore (4.3)

As the bodies in ZhL are only made up of a core and a water ice shell, the mass retention fraction for
the mantle is set to the same as the one for the core. The range for the randomized values is taken
from the original paper. While they might not be applicable to the slightly different scenario here, they
nevertheless show the influence of adding mass loss to the formed system.

16

4 Mass Loss Estimation

δlow
core = 0.01

δlow
water = 0.01

δup
core = 0.08

δup
water = 0.10

4.3 RBF-based Mass Loss Estimation

This is the main mass loss estimation method of this thesis, and unlike the previous methods, it takes
the properties of the collision in consideration. For this, it uses the dataset of around 10 000 collisions
from ChB as described in Section 2.

The collision parameter set of the dataset consists of a 9977× 6 array of the collision input variables
impact angle α, collision velocity v, projectile mass Mprojectile, mass ratio between the two bodies
γ, target water mass fraction and projectile water mass fraction for each of the 9977 collisions used.
From now on the array of these six parameters will be called X. The output dataset consists of the
water/mantle/core mass retention fraction for the same collisions. They are defined as the fraction
between the total mass of a material in the two most massive remnants of a collision and the total mass
of the material in the two initial bodies. The combination of the three mass retention fractions for a
collision will from now on be called Y . The goal for a mass loss estimation method is now to find a
method f that can accurately estimate Y given an arbitrary set of X (f(X) = Y). One initial step that
helps with this is to calculate the mean and standard deviation for every collision parameter over the
dataset and use them to then normalize any arbitrary X before continuing. Otherwise, some parameters
like the projectile mass would dominate any estimation method purely by being orders of magnitude
larger than the others.

The method that is then used to estimate a Y for every X given the dataset of existing collisions is
based on Radial Basis Functions as described in Du Toit 2008 and was already successfully applied to a
much smaller dataset in the Bachelor’s Thesis Winkler 2019. Functions φ in x, which only depend on
the distance |x| (so φ(x) = φ(|x|)), are called radial functions. To be able to use this for interpolation,
we need to find an interpolation function s(x) that is the same as our given Y for every X from the
dataset (4.4).

s(Xi) = Yi, i = 1, 2, . . . , n (4.4)

For all other values, we use a linear combination of φ(|x−Xi|) with the radial function φ we will choose
later and n constants λi.

s(x) =

n∑
i=1

λiφ(‖x− xi‖) (4.5)

Yj =

n∑
i=1

λiφ(‖Xj − xi‖), j = 1, 2, . . . , n (4.6)

This allows us to write the same relation as a linear matrix equation

17

4 Mass Loss Estimation

1 class RbfMassloss(Massloss):

2 name = "rbf"

3
4 def __init__(self):

5 # [.....] (load the collision dataset)

6 self.scaler = CustomScaler()

7 self.scaler.fit(simulations.X)

8 scaled_data = self.scaler.transform_data(simulations.X)

9
10 self.interpolator = Rbf(*scaled_data.T, simulations.Y.T, function="linear", mode="N-D")

11
12 def estimate(self, alpha, velocity, projectile_mass, gamma) ->- Tuple[float, float, float]:

13 hard_coded_water_mass_fraction = 1e-5

14 estimation_input = [alpha, velocity, projectile_mass, gamma,

15 hard_coded_water_mass_fraction, hard_coded_water_mass_fraction]

16
17 scaled_input = list(self.scaler.transform_parameters(testinput))

18 water_retention, mantle_retention, core_retention = self.interpolator(*scaled_input)

19 return float(water_retention), float(mantle_retention), float(core_retention)

Code Fragment 4.2: massloss/rbf_massloss.py (simplified)

φ(‖x1 − x1‖) φ(‖x2 − x1‖) . . . φ(‖xn − x1‖)
φ(‖x1 − x2‖) φ(‖x2 − x2‖) . . . φ(‖xn − x2‖)

...
...

. . .
...

φ(‖x1 − xn‖) φ(‖x2 − xn‖) . . . φ(‖xn − xn‖)

λ1

λ2

...
λn

 =

Y1

Y2

...
Yn

 (4.7)

or simply

Φλ = Y (4.8)

with the symmetric13 x× n matrix Φ. This also means that we only have to solve this (9977× 9977)
matrix equation once at the beginning of the simulation to get λ and can then rather quickly estimate
values. The whole method can be used in m dimension by using an x ∈ Rm and a norm in Rm for ‖ ‖.
In our case, m = 6 for the six impact parameters in X and we can repeat the method three times for
each of the three mass retention fractions in Y .

We implement this method using interpolate.Rbf() from the scipy Python module (Virtanen et al.
2020), as seen in Code Fragment 4.2. Many different radial functions are supported, but we pick the
simplest of them, the linear function Φ(r) = r.

As the water mass fractions in the SPH simulation set and the ones in the N-Body simulations are not
comparable14, we cannot just use them in the interpolation. But as we can see in Figure 2.2, the water
mass fractions hardly influence the estimation outcome, so we can simply set them to 10−5 and ignore
the further details.

Figure 4.1 shows the output of the interpolation for water mass retention15 applied to two different
projectile masses covering the main part of the parameter space of collision angle and velocity.

13as ‖xj − xi‖ = ‖xi − xj‖
14If a realistic water fraction of 10−5 was used in the SPH collision, the resolution of around 50 000 particles would mean

that there was not even a full layer of water particles and the results would be unrealistic because of this.
15The same figure for mantle and core material looks similar, but the border moves to the top right as it needs a stronger

impact to lose mass from the inner parts of the bodies.

18

4 Mass Loss Estimation

0 10 20 30 40 50 60
impact angle []

1

2

3

4

5
ve

lo
cit

y
v

[v
es

c]

0.0

0.2

0.4

0.6

0.8

1.0

wa
te

r r
et

en
tio

n
fra

ct
io

n

(a) Mprojectile = 1022 kg, γ = 0.6, wt = wp = 10−5

0 10 20 30 40 50 60
impact angle []

1

2

3

4

5

ve
lo

cit
y

v
[v

es
c]

0.0

0.2

0.4

0.6

0.8

1.0

wa
te

r r
et

en
tio

n
fra

ct
io

n

(b) Mprojectile = 1024 kg, γ = 0.6, wt = wp = 10−5

Figure 4.1: Interpolation result using Radial Basis Functions.

input layer
hidden layer hidden layer

output layer

Figure 4.2: An example of a simple Neural Network.

4.4 Neural Network Mass Loss Estimation

Another method to estimate the mass loss is using a really simple Artificial Neural Network. This
method is a significantly improved version of the one described in Winkler 2019 and uses the exact same
dataset as in Section 4.3 for training.

Such a simple Neural Network (Figure 4.2) consists of an input layer (in our case the six input parameters),
one or multiple hidden layers and one output layer (consisting of the three mass loss fractions and the
fraction between the mass lost in the most massive and the second most massive remnant16).

Each node z consists of the linear combination of all nodes from the previous layer combined with the
weight w of the connection between them. Afterwards, the activation function g is applied to get the
prediction ŷ.

z =
∑
i

wixi ŷ = g(z) (4.9)

16This is not used any further in this thesis, but could be used to distinguish hit-and-run scenarios in the future.

19

4 Mass Loss Estimation

1 from torch import nn

2
3 class Network(nn.Module):

4 def __init__(self):

5 super().__init__()

6 self.hidden = nn.Linear(6, 50)

7 self.output = nn.Linear(50, 4)

8
9 self.sigmoid = nn.Sigmoid()

10 self.relu = nn.ReLU()

11
12 def forward(self, x):

13 x = self.hidden(x)

14 x = self.relu(x)

15 x = self.output(x)

16 x = self.sigmoid(x)

Code Fragment 4.3: bac/network.py

For the activation function g, we are using the rectified linear unit (ReLu) g(x) = max(0, x) (Nair and
Hinton 2010) on the hidden layer and the sigmoid function σ(x) = 1

1+e−x on the output layer, as all
predicted values are in the range [0, 1]. These non-linear activation functions are needed for the neural
network to not just be a linear combination of values, but to also be able to approximate non-linear
functions.

During the training of the neural network, this step (the feedforward) is followed by the backpropagation,
where the predictions ŷ are compared with the real output y in the training set. The function describing
the error is called the Loss function L and the one used in this work is the mean squared error.

L(ŷ, y) =
∑
i

(ŷi − yi)
2 (4.10)

To train the neural network, pytorch (Paszke et al. 2019) is used to describe the network as seen in
Code Snippet 4.3. The hidden layer of the network consists of 70 nodes connected to the 6 nodes in
the input layer and 4 nodes in the output layer. For training, the existing dataset of collisions was
split into a training set containing 80% of the collisions (7982 entries) and a validation set containing
the remaining 1995 entries. After normalizing the dataset as described in Section 4.3, we use the Adam

optimizer (Kingma and Ba 2015) to train the dataset for 200 epochs. The output of the loss function on
the training dataset and the validation decreases monotonously, as can be seen in Figure 4.3. The final
state of the network including the means and standard deviations used by the scaler are then saved
into an output file. One theoretical advantage of this method is that unlike the RBF-based method or
when creating three separate neural networks the correlations between output values is considered as
the training tries to find constants that are able to ‘explain’ all of them at once.

To keep the simulation setup simple, pytorch is not used to evaluate the neural network in simulations,
but instead the process described above is implemented directly in Python. In addition, to help visualize
the parameter space, a second implementation in JavaScript is used to create an interactive evaluation
of the network available at https://mt-nn.lw1.at.

Figure 4.4 shows the output of the neural network for water mass retention applied to two different
projectile masses with the same parameters as in Figure 4.1. Similar to the output of the RBF-based
Mass Loss Estimation, a smooth gradient between high and low impact velocities can be seen, even
though there are some minor artefacts visible, that are caused by the size of the hidden layer and other
hyperparameters. Another way to see the accuracy of this model is by comparing the real data with the
output of the model for the training and validation dataset, as can be seen in Figure 4.5.

20

https://mt-nn.lw1.at

4 Mass Loss Estimation

0 25 50 75 100 125 150 175 200
Epoch

0.00

0.01

0.02

0.03

0.04

0.05

Lo
ss

training data
validation data

Figure 4.3: Evolution of loss function applied to training and validation dataset during training.

0 10 20 30 40 50 60
impact angle []

1

2

3

4

5

ve
lo

cit
y

v
[v

es
c]

0.0

0.2

0.4

0.6

0.8

1.0
wa

te
r r

et
en

tio
n

fra
ct

io
n

(a) Mprojectile = 1022 kg, γ = 0.6, wt = wp = 10−5

0 10 20 30 40 50 60
impact angle []

1

2

3

4

5

ve
lo

cit
y

v
[v

es
c]

0.0

0.2

0.4

0.6

0.8

1.0

wa
te

r r
et

en
tio

n
fra

ct
io

n

(b) Mprojectile = 1024 kg, γ = 0.6, wt = wp = 10−5

Figure 4.4: Interpolation result using the neural network.

0.0 0.2 0.4 0.6 0.8 1.0
model output

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

re
al

 d
at

a

(a) Training Dataset

0.0 0.2 0.4 0.6 0.8 1.0
model output

0.0

0.2

0.4

0.6

0.8

1.0

1.2

re
al

 d
at

a

(b) Validation Dataset

Figure 4.5: Prediction of the neural network for shell (•), mantle (•) and core (•) compared with their
actual value in the collision dataset.

21

5 Results

After running all simulation scenarios described in Section 3.5, we can now analyse the outcomes and
compare them to the ones from ChB and ZhL. One of the most straightforward results we can look at
to learn more about the simulation outcomes are the properties of the formed bodies that remained at
the end of all simulations (Figure 5.1). Figure 5.1a shows the sum of all final systems of the RBF-based
simulation runs. The orbital parameters are averaged over the last 10Myr (corresponding to 1000
simulation saves) to avoid effects by oscillations. Leftover planetesimals that never collided with any
other body are left out in all results. The iron core mass is drawn in black, while the colour of total
mass of the planets17 indicates the water mass fraction of the body. For this, a unified colour scale is
used throughout this thesis (which was already seen before in Figure 3.1). In addition, the habitable
zone around the sun is filled in light grey in the background. For this thesis, just like in ChB, the
habitable zone is simplified as the area between 0.75AU and 1.5AU which roughly matches the area
from Kopparapu et al. 2013. Finally, the real orbital parameters and masses of the inner planets of the
solar system are drawn as black circles with the water mass fraction of Earth filled in. The total mass of
water on primordial Earth Mw,⊕ is assumed to be 1.7 · 1021 kg (Lécuyer, Gillet and Robert 1998)18 for
this. Unless mentioned otherwise, whenever we look at a single simulation outcome (like in Figure 5.1f),
we will pick the one based on the first set of initial conditions to avoid cherry-picking outcomes. Also,
it is important to note for all results that all simulations of planetary formation are a stochastic and
chaotic process and while the number of simulations per method is a lot larger than in ChB (40, 20
and 18 compared to 5 and 3) the outcomes still only show general trends instead of precise statistical
outcomes.19

Looking at the results in Figure 5.1, we can see that in all scenarios (apart from LZ which will be explained
later on), planets with similar properties to the ones in the inner solar system were formed in addition
to many others. Also, it is faintly visible that the perfect merging method results in more planets with
more water. This is a lot more visible when looking at the average values for the simulation outcomes
by mass loss estimation method (Table 5.1 and Table 5.2 for minimum and maximum values).

Using RBF-based mass loss we can see that 1 to 3 planets are formed (Nplanets), of which 0 to 2
(Nplanets,pot) are inside the potentially habitable zone. As expected, the largest difference can be
seen when comparing the total mass Mplanets and the total mass of the water Mwater of these planets.
Comparing the RBF dataset with the perfect merging dataset shows that the total mass is about 40%
less and the water mass is about 50% less. Most of this larger mass loss is of course explained by the
mass lost in the collision handling Mcol, but it seems like part of it is also caused by a larger amount of
mass lost in collisions with the sun Msun (Section 3.2.2). Interestingly, both in this thesis and in ChB
the amount of mass lost via ejections from the solar system Mesc is very similar between the different
methods. But between this thesis and ChB, there is a large difference in Mesc which might be explained
by small differences in the simulation setup and implementation. Compared to this, the mass accreted
onto gas giants Mgas-giant is quite negligible.

17The size of bodies in all plots areas are scaled so that the diameter of the circles scales with 3
√

mass or their area with
mass2/3.

18The exact value is not accurately known as it is not clear how much water is in Earth’s mantle. The better known
value is the total amount of water in Earth’s oceans, which is (1.335± 0.013) · 109 km3 = 1.335 · 1021 kg (Eakins and
Sharman 2010).

19This also means that while some individual results might resemble the planets in the current inner solar system, this is
not expected of all simulation outcomes.

22

5 Results

0.5 1.0 1.5 2.0 2.5 3.0 3.5
semi-major axis [AU]

0.0

0.1

0.2

0.3

0.4

0.5
ex

ce
nt

ric
ity

(a) RBF

0.5 1.0 1.5 2.0 2.5 3.0 3.5
semi-major axis [AU]

0.0

0.1

0.2

0.3

0.4

0.5

ex
ce

nt
ric

ity

(b) RBF_SM

0.5 1.0 1.5 2.0 2.5 3.0 3.5
semi-major axis [AU]

0.0

0.1

0.2

0.3

0.4

0.5

ex
ce

nt
ric

ity

(c) NN

0.5 1.0 1.5 2.0 2.5 3.0 3.5
semi-major axis [AU]

0.0

0.1

0.2

0.3

0.4

0.5

ex
ce

nt
ric

ity

(d) PM

0.5 1.0 1.5 2.0 2.5 3.0 3.5
semi-major axis [AU]

0.0

0.1

0.2

0.3

0.4

0.5

ec
ce

nt
ric

ity

(e) LZ

0.5 1.0 1.5 2.0 2.5 3.0 3.5
semi-major axis [AU]

0.0

0.1

0.2

0.3

0.4

0.5

ex
ce

nt
ric

ity

(f) RBF (only the first simulation)

5 4 3 2 1 0
log(water mass fraction)

Figure 5.1: All final bodies formed after 200Myr simulations.

23

5
R

esults

RBF RBF_SM NN LZ PM ChB ChB PM
Nplanets [1] 1.9± 0.7 2.1± 0.7 1.9± 0.8 3.8± 1.7 2.6± 0.6 2.6± 0.5 2.7± 0.5

Nplanets,pot [1] 0.7± 0.6 0.8± 0.6 0.8± 0.4 0.8± 0.9 1.1± 0.6 0.8± 0.4 1.0
Mplanets [M⊕] 1.7± 0.5 1.8± 0.4 2.1± 0.5 1.0± 0.3 2.8± 0.4 2.2± 0.4 3.6± 0.2

Mplanets,pot [M⊕] 0.6± 0.7 0.6± 0.7 1.0± 0.9 0.1± 0.2 1.6± 0.8 1.1± 0.6 1.8± 0.7
Mwater [Mw,⊕] 44.4± 30.8 49.3± 32.7 52.2± 38.6 27.9± 25.1 87.1± 49.6 34.3± 16.9 132.3± 19.6

Mwater,pot [Mw,⊕] 15.1± 23.5 13.0± 18.7 21.6± 34.4 0.5± 1.1 45.9± 38.0 25.8± 16.7 51.3± 46.7
Mesc [M⊕] 1.4± 0.4 1.4± 0.4 1.4± 0.4 1.1± 0.3 1.5± 0.4 0.2± 0.1 0.2± 0.2

Mesc,water [Mw,⊕] 36.9± 25.5 35.0± 22.6 26.6± 16.0 22.2± 10.1 37.5± 29.7 2.8± 2.6 2.8± 1.0
Msun [M⊕] 2.4± 0.5 2.3± 0.5 2.2± 0.4 3.0± 0.4 1.8± 0.3 2.6± 0.2 2.2± 0.2

Msun,water [Mw,⊕] 192.3± 39.5 188.8± 40.8 205.1± 41.5 233.1± 29.9 180.8± 43.6 257.0 210.0
Mgas-giant [M⊕] 0.0± 0.1 0.0 0.0 0.1± 0.2 0.0 - -

Mgas-giant,water [Mw,⊕] 3.9± 9.0 2.7± 7.0 1.4± 1.4 14.2± 25.2 1.5± 1.3 - -
Mcol [M⊕] 0.6± 0.7 0.5± 0.5 0.7± 0.4 0.6± 0.1 0.0 1.1± 0.3 0.0

Mcol,water [Mw,⊕] 23.0± 11.2 23.3± 11.6 22.0± 8.9 10.8± 3.3 0.0 - -
tlast-col [Myr] 85.8± 45.5 76.3± 45.0 94.7± 50.4 131.1± 36.0 102.8± 39.8 295.6± 55.5 127.3± 34.0

Table 5.1: Aggregated results and their standard deviation for all remaining bodies per mass loss estimation method compared with the results from ChB.
‘pot’ refers to the properties of only bodies inside the potentially habitable zone and ‘water’ to the water mass. M⊕ are Earth masses while Mw,⊕
are Earth water masses. A detailed description of all rows can be found in the text on page 22.

Nplanets [1] 1.0 – 3.0 1.0 – 3.0 1.0 – 4.0 1.0 – 7.0 1.0 – 3.0 2.0 – 3.0 2.0 – 3.0
Nplanets,pot [1] 0.0 – 2.0 0.0 – 2.0 0.0 – 1.0 0.0 – 3.0 0.0 – 2.0 0.0 – 1.0 1.0 – 1.0
Mplanets [M⊕] 0.7 – 3.0 1.2 – 3.0 1.3 – 3.2 0.4 – 1.4 2.1 – 3.4 1.4 – 2.4 3.4 – 3.9

Mplanets,pot [M⊕] 0.0 – 1.9 0.0 – 1.8 0.0 – 2.3 0.0 – 0.6 0.0 – 2.7 0.0 – 1.5 0.9 – 2.5
Mwater [Mw,⊕] 0.0 – 105.7 0.0 – 101.8 0.0 – 126.8 0.0 – 66.5 7.0 – 192.1 6.8 – 53.0 117.0 – 160.0

Mwater,pot [Mw,⊕] 0.0 – 104.0 0.0 – 54.1 0.0 – 96.7 0.0 – 3.0 0.0 – 120.4 0.0 – 50.2 0.0 – 113.0
Mesc [M⊕] 0.8 – 2.7 0.8 – 2.0 0.8 – 2.2 0.6 – 1.7 0.8 – 2.4 0.1 – 0.3 0.1 – 0.5

Mesc,water [Mw,⊕] 10.4 – 124.5 11.6 – 82.7 14.5 – 68.9 12.4 – 49.6 10.2 – 107.7 0.0 – 6.8 2.1 – 4.3
Msun [M⊕] 1.4 – 3.3 1.4 – 3.2 1.4 – 2.8 2.4 – 3.6 1.1 – 2.4 2.2 – 2.7 2.1 – 2.6

Msun,water [Mw,⊕] 117.4 – 266.6 117.4 – 255.6 140.3 – 287.0 183.7 – 280.1 96.5 – 252.7 - -
Mgas-giant [M⊕] 0.0 – 0.2 0.0 – 0.2 0.0 – 0.2 0.0 – 0.9 0.0 – 0.1 - -

Mgas-giant,water [Mw,⊕] 0.0 – 37.0 0.0 – 32.0 0.0 – 4.3 0.0 – 75.6 0.0 – 4.3 - -
Mcol [M⊕] 0.3 – 4.2 0.3 – 2.7 0.2 – 1.3 0.4 – 0.7 0.0 – 0.0 0.7 – 1.6 0.0 – 0.0

Mcol,water [Mw,⊕] 5.5 – 51.4 5.5 – 44.8 6.1 – 39.6 6.8 – 17.2 0.0 – 0.0 - -
tlast-col [Myr] 23.6 – 195.0 23.6 – 186.2 25.4 – 199.0 80.3 – 192.1 46.9 – 196.3 217.0 – 369.0 80.0 – 158.0

Table 5.2: Same as Table 5.1, but showing the minimum and maximum of the range of values.

24

5 Results

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time [yr] 1e8

0

50

100

150

200

250

nu
m

be
r o

f o
bj

ec
ts

RBF
NN
LZ
PM

(a) linear x-axis

104 105 106 107 108

time [yr]

0

50

100

150

200

250

nu
m

be
r o

f o
bj

ec
ts

RBF
NN
LZ
PM

(b) logarithmic x-axis

Figure 5.2: Number of bodies in the simulations over time.

Unlike in ChB, we can hardly see any difference in the time of the last collision tlast-col. This is even more
clearly visible when we take a closer look at the evolution of the number of particles in the simulations.
In Figure 5.2, we plot the number of bodies in the simulation against the time. All simulations start with
284 bodies, but as they collide and merge, the number quickly decreases. Apart from the randomized
mass loss method (LZ), all simulation in all variants follow nearly the exact same curve. This is expected
as hit-and-run collisions are not handled separately unlike in ChB and therefore any collision causes a
reduction of the number of particles in the simulation by one. This reduction of bodies and therefore
N2-interactions also allows us to finish the simulation in a reasonable time. Quite similarly we can plot
the reduction of the total mass20 and water mass over time in Figure 5.3. At a first glance, this looks
similar to Figure 5.2b, but there are two major differences. The spread between the final values is a lot
higher as, while nearly all simulations end up with only a few remaining particles, the amount of mass
lost over time depends on the (chaotic) properties of the collision histories and ejections. Additionally,
we can see the influence of mass loss in collisions as the masses are generally higher in the perfect
merging simulations.

We can also take a closer look at what happens during individual simulations. Figure 5.4 shows five
snapshots at different times in singular simulations based on the first initial conditions. We can see
that in the first Myr the eccentricity of all bodies increases strongly and collisions are quite common.
At 5Myr, the number of bodies has already decreased significantly (as also visible in Figure 5.2b) and
larger bodies are starting to form. In the scenarios using more realistic mass loss, water is still mostly in
the outer parts of the system. At 20Myr, this changes with the water mass fraction increasing in the
more massive protoplanets due to water-rich collisions. This process continues, as visible in the 50Myr
plot, until only few bodies are remaining and collisions become rarer.

Another way to analyse the outcomes of singular simulation runs is by looking at the remaining planets
and then following their collision history back in time, always looking at the more massive parent body.
The results for the first simulation with all four methods (which are the same as in Figure 5.4) can be
seen in Figure 5.5. The upper plot traces the mass of the bodies and how it changes through accretion,
while the lower plot shows the change of the water mass fraction over time. Remaining bodies that had
less than three collisions during their formations are hidden and the water mass of Earth is indicated
by a dotted line21. We can see that while the mass of the bodies has to always monotonically increase
over time when assuming perfect merging, the other methods allow collisions to happen that are strong

20Only mass in planetesimals and planetary embryos is counted.
21As mentioned earlier in this section, this value is not to be taken as a precise measurement.

25

5 Results

104 105 106 107 108

time [yr]

1

2

3

4

5

6
to

ta
l m

as
s [

M
]

RBF
NN
LZ
PM

(a) total mass

104 105 106 107 108

time [yr]

0

50

100

150

200

250

300

to
ta

l w
at

er
 m

as
s [

M
w

,
]

RBF
NN
LZ
PM

(b) only water mass

Figure 5.3: Total mass in all planetesimals and planetary embryos over time.

enough that the mass loss is higher than the mass gain though merging two bodies. Because of this the
newly formed body has a smaller mass than the two parent bodies each had before the collision.

It is important to note that due to the chaotic processes during planetary formation, the simulation
outcomes as shown in Figure 5.1, 5.4 and 5.5 are only examples of possible simulation outcomes. The
differences in-between them are not only caused by the difference in mass loss estimation, but mostly by
minor differences in the beginning of the simulation, making the chaotic processes result in strongly
different final bodies. We can get some more generalized results by overlaying these collision histories
for all resulting bodies in all simulations run in Figure 5.6, while keeping in mind that the RBF dataset
consists of twice as many simulations. Then we can (once again ignoring LZ for now) for example see
that in most cases the mass starts to slowly increase already early on when the first bodies collide after
a few ten thousand years and continues to do so until only few bodies remain at around 100Myr to
150Myr. Compared to that, it takes a lot longer for the water mass fractions to change, as it takes
bodies around 10Myr to 15Myr to travel far enough to collide with ones with other water mass fractions
(see Figure 3.1 for the initial conditions). One effect that is mentioned in ChB, p. 18 can also be seen
here: in many simulations, an early collision delivers water and increases the water mass fraction by a
bit to around 0.5% with a later water-rich-collision delivering the majority of the water mass. Therefore,
in many cases, only the later water-rich collision is enough for a water-rich planet to form, but when
only the earlier collision occurs, it stays less water-rich. One limitation of this visualisation is that we
only follow the history of the more massive progenitor and therefore lose the details of water transport
if most water comes from a less massive collision body.

We can also take an even closer look at the properties of a specific formed planet in the first simulation
of the RBF dataset. If we only consider the collision history of planet 378 (blue line in Figure 5.5a and
inner larger body in the bottom right of Figure 5.4), we can follow the full tree of all bodies whose mass
contributed to the final planet and plot it as a graph (Figure 5.7). Planetesimals (using the definition
from Section 3.1) are displayed as an ellipse, while planetary embryos are displayed as boxes. Both
contain the total mass and water mass fraction of the body and are filled-in according to the same
water-mass-fraction colour scheme as used in the rest of the thesis. The diamond-shaped boxes between
them indicate collisions and show the fraction of water-shell, mantle and core mass remaining after the
collision. Once again, we can see how the majority of the water is accreted in late collisions and that
later collisions are more severe, which is also visible in Figure 5.8b.

A completely different view on the influence of the mass loss estimation method on the collision outcomes
can be seen by looking at all collisions that happened during the simulations (8429 in total). When

26

5 Results

0.0

0.2

0.4

0.6

0.8
1 Myr RBF 1 Myr NN 1 Myr PM 1 Myr LZ

0.0

0.2

0.4

0.6

0.8
5 Myr RBF 5 Myr NN 5 Myr PM 5 Myr LZ

0.0

0.2

0.4

0.6

0.8
20 Myr RBF 20 Myr NN 20 Myr PM 20 Myr LZ

0.0

0.2

0.4

0.6

0.8
50 Myr RBF 50 Myr NN 50 Myr PM 50 Myr LZ

0 2 4
0.0

0.2

0.4

0.6

0.8
100 Myr RBF

0 2 4

100 Myr NN

0 2 4

100 Myr PM

0 2 4

100 Myr LZ

semi-major axis [AU]

ec
ce

nt
ric

ity

5 4 3 2 1 0
log(water mass fraction)

Figure 5.4: Snapshots of four simulation runs at five different times. The size of Jupiter (light green) is
scaled according to its mass like with the other bodies.

27

5 Results

10 1

100

m
as

se
s [

M
]

104 105 106 107 108

time [yr]

1024

1025

m
as

se
s [

kg
]

378
377

104 105 106 107 108

time [yr]

10 5

10 4

10 3

10 2

wa
te

r m
as

s f
ra

ct
io

n 378
377

(a) RBF

10 1

100

m
as

se
s [

M
]

104 105 106 107 108

time [yr]

1024

1025

m
as

se
s [

kg
]

367
375

104 105 106 107 108

time [yr]

10 5

10 4

10 3

10 2

wa
te

r m
as

s f
ra

ct
io

n 367
375

(b) NN

10 1

100

m
as

se
s [

M
]

104 105 106 107 108

time [yr]

1024

1025

m
as

se
s [

kg
]

346
342
351
339

104 105 106 107 108

time [yr]

10 5

10 4

10 3

10 2

wa
te

r m
as

s f
ra

ct
io

n 346
342
351
339

(c) LZ

10 1

100

m
as

se
s [

M
]

104 105 106 107 108

time [yr]

1024

1025

m
as

se
s [

kg
]

400
396
401

104 105 106 107 108

time [yr]

10 5

10 4

10 3

10 2

wa
te

r m
as

s f
ra

ct
io

n

400
396
401

(d) PM

Figure 5.5: Mass and water mass fraction changes of resulting planets over their collision history.

28

5 Results

10 1

100

m
as

se
s [

M
]

104 105 106 107 108

time [yr]

1024

1025

m
as

se
s [

kg
]

104 105 106 107 108

time [yr]

10 5

10 4

10 3

10 2

wa
te

r m
as

s f
ra

ct
io

n

(a) RBF

10 1

100

m
as

se
s [

M
]

104 105 106 107 108

time [yr]

1024

1025

m
as

se
s [

kg
]

104 105 106 107 108

time [yr]

10 5

10 4

10 3

10 2

wa
te

r m
as

s f
ra

ct
io

n

(b) NN

10 1

100

m
as

se
s [

M
]

104 105 106 107 108

time [yr]

1024

1025

m
as

se
s [

kg
]

104 105 106 107 108

time [yr]

10 5

10 4

10 3

10 2

wa
te

r m
as

s f
ra

ct
io

n

(c) LZ

10 1

100

m
as

se
s [

M
]

104 105 106 107 108

time [yr]

1024

1025

m
as

se
s [

kg
]

104 105 106 107 108

time [yr]

10 5

10 4

10 3

10 2

wa
te

r m
as

s f
ra

ct
io

n

(d) PM

Figure 5.6: Same visualisation as Figure 5.5, but for all simulations of one type.

29

5 Results

0.98/1.00/1.00

m=3.9e+23
wmf=9.9e-06

0.99/0.99/1.00

m=3.4e+23
wmf=1.0e-05

m=4.9e+22
wmf=1.0e-05

0.99/0.99/1.00

m=4.6e+23
wmf=1.0e-05

1.00/1.00/1.00

m=4.1e+23
wmf=1.0e-05

m=4.9e+22
wmf=1.0e-05

m=5.0e+23
wmf=1.0e-05

0.90/0.97/1.00

m=4.9e+22
wmf=1.0e-05

m=4.4e+23
wmf=9.8e-06

0.97/0.99/1.00

m=4.9e+22
wmf=1.0e-05

0.99/1.00/1.00

m=4.3e+23
wmf=9.9e-06

0.97/0.99/1.00

m=3.8e+23
wmf=1.0e-05

m=4.9e+22
wmf=1.0e-05

1.00/1.00/1.00

m=4.1e+23
wmf=1.0e-05

0.99/1.00/1.00

m=3.7e+23
wmf=1.0e-05

m=4.9e+22
wmf=1.0e-05

m=4.8e+23
wmf=9.6e-06

1.00/1.00/0.99

m=4.9e+22
wmf=1.0e-05

0.95/0.99/1.00

m=5.2e+23
wmf=9.6e-06

0.97/0.99/1.00

m=4.8e+23
wmf=1.0e-05

m=4.9e+22
wmf=1.0e-05

m=5.7e+23
wmf=9.4e-06

0.91/0.99/0.99

m=4.9e+22
wmf=1.0e-05

m=5.4e+23
wmf=9.2e-06

0.99/1.00/1.00

m=4.9e+22
wmf=1.0e-05

m=4.6e+23
wmf=9.9e-06

1.00/1.00/1.00

m=4.9e+22
wmf=1.0e-05

m=5.1e+23
wmf=9.9e-06

0.97/1.00/1.00

m=4.9e+22
wmf=1.0e-05

m=5.9e+23
wmf=9.2e-06

0.96/0.99/1.00

m=4.9e+22
wmf=1.0e-05

m=5.6e+23
wmf=9.7e-06

m=4.9e+22
wmf=1.0e-05

m=6.3e+23
wmf=9.0e-06

0.87/0.96/0.97

m=4.9e+22
wmf=1.0e-05

m=1.1e+24
wmf=8.9e-06

0.99/1.00/1.00

m=5.4e+23
wmf=1.0e-05

m=1.0e+24
wmf=9.6e-06

0.91/0.98/0.97

m=4.7e+23
wmf=9.7e-06

0.84/0.94/0.96

m=4.9e+22
wmf=1.0e-05

m=1.1e+24
wmf=9.0e-06

0.99/0.99/1.00

m=4.9e+22
wmf=1.0e-05

0.86/0.95/1.00

m=9.0e+23
wmf=5.5e-05

0.99/1.00/1.00

m=8.9e+23
wmf=1.0e-05

m=4.9e+22
wmf=1.0e-03

m=1.1e+24
wmf=8.9e-06

0.95/0.99/1.00

m=4.9e+22
wmf=1.0e-05

m=4.9e+23
wmf=8.5e-06

m=4.9e+22
wmf=1.0e-05

m=6.5e+23
wmf=8.2e-06

0.98/1.00/0.99

m=4.9e+22
wmf=1.0e-05

m=1.6e+24
wmf=8.4e-06

0.99/1.00/1.00

m=1.1e+24
wmf=8.9e-06

0.98/0.99/1.00

m=4.9e+22
wmf=1.0e-05

m=1.7e+24
wmf=8.4e-06

0.97/0.99/1.00

m=4.9e+22
wmf=1.0e-05

m=1.1e+24
wmf=8.9e-06

m=4.9e+22
wmf=1.0e-05

m=1.8e+24
wmf=8.5e-06

0.85/0.96/1.00

m=1.7e+24
wmf=8.3e-06

0.94/0.98/1.00

m=4.9e+22
wmf=1.0e-05

m=1.7e+24
wmf=7.9e-06

0.71/0.87/0.99

m=4.9e+22
wmf=1.0e-05

m=1.8e+24
wmf=7.5e-06

m=4.9e+22
wmf=1.0e-05

m=3.2e+24
wmf=6.1e-06

0.85/0.95/0.95

m=3.0e+24
wmf=5.5e-06

1.00/1.00/0.99

m=4.9e+22
wmf=1.0e-05

m=4.0e+24
wmf=2.4e-04

1.00/1.00/1.00

m=9.3e+23
wmf=1.0e-03

m=5.2e+24
wmf=1.2e-02

0.86/0.95/0.95

m=1.2e+24
wmf=5.0e-02

m=4.9e+24
wmf=1.1e-02

0.97/0.99/1.00

m=4.9e+22
wmf=1.0e-05

m=5.0e+24
wmf=1.0e-02

m=4.9e+22
wmf=1.0e-05

m=5.9e+24
wmf=8.6e-03

Figure 5.7: Collision graph of one of the final planets in the first RBF simulation.

30

5 Results

plotting the impact angle and velocity of the collisions (Figure 5.8a), we can see that while the majority
of collisions has a collision velocity close to the escape velocity vesc, there is still a significant amount of
stronger collisions. There also does not seem to be any significant difference in the type of collisions
that occur in the simulations between the different mass loss estimation methods. Figure 5.8b again
plots the collision velocity but this time against the time in the simulation. We can see that at the
beginning of the simulation (up to 100 000 years), the velocities of nearly all collisions are rather low
as the system starts with very low eccentricities. Only over time and as more and more bodies collide,
collisions become more impactful and are able to reach up to 10 times the mutual escape velocity. Once
again, the final million years have a significantly lower number of collisions, as the number of bodies
becomes rather low. If we now consider the impact of the collisions in the mass loss like we do in the
RBF and NN datasets, then we can also see this effect in the amount of water (Figure 5.8c) and iron core
mass (Figure 5.8d) lost in each collision. So while hardly any water is lost during the first 100 000 years,
water loss in collisions becomes significant later on with common collisions where more than 10% water
mass lost. The same is true for the mantle and core mass loss, but offset to lower values, as collisions
impact the outer layers of planets more. As we would expect, the randomized mass loss method in green
gives random outcomes in the defined range. We can also analyse the distributions of the impact angle
α as defined in Figure 3.3 (Figure 5.8e and 5.8f) and as expected, there is no change in the distribution
over time and 45◦ collisions are most common (ᾱ = 45.4◦) with a symmetric decrease towards 0◦ and
90◦. More precisely, the distribution matches sin(2x) (orange line) very well.

5.1 Randomized Mass Loss

For now we mostly ignored the outcomes of the LZ simulations, which used the randomized mass loss
inspired by ZhL as described in Section 4.2. That’s because they appear to have unphysically seeming
results that differ strongly from both perfect merging and the more realistic mass loss estimation methods
introduced in this thesis. We can see in Figure 5.1e, Figure 5.4 and Table 5.1 that the final bodies
are significantly smaller and simulations finish with significantly more final planets. Figure 5.2a and
5.6c also show that collisions occur either much slower to the point where up to a third of all bodies
still exist after 100Myr. But even in the following 100Myr the number does not decrease much further,
indicating that the process is not just slowed down, but halted.

The reason for this seems to be two processes that can be seen when looking at the properties of all
collisions over time. Figure 5.8c shows how unlike in every other method the amount of water mass
lost in collisions cannot slowly increase over time, but is per definition between 1% and 10%. And
this means that with a bit of bad luck a very early collision can already cause a large amount of mass
loss. This is made worse by the fact that, as visible in Figure 5.8d, the difference is even larger in the
solid mass loss in mantle and core. The randomized range of 1% to 8% (which was not intended for
simulating the early solar system, but 55 Cancri in ZhL) is far higher than the mass loss that occurs in
the other methods where it stays below 1% for a long time. In combination, these two effects mean
that early collisions between bodies can already be strong enough that mass growth is hindered and
the decreased mass reduces the chances that bodies hit each other again later causing too many small
bodies to remain.

The latter issue could be solved by picking a range for the randomized mass loss that closer resembles
the loss that seem to occur based on the SPH-based collision modelling. But this still leaves the issue
that the mass loss in early collisions is overestimated. One could consider adding a dependency on the
time in the simulation to fix this, but at this point one might also need to add a dependency with the
impact angle and velocity to not accidentality estimate a large amount of mass loss in a weak collision.
And this would bring the complexity of the implementation to a similar level as the other methods
introduced in this paper which are also very computationally inexpensive.

31

5 Results

RBF NN LZ PM

0 20 40 60 80
impact angle [deg]

2

4

6

8

10

v/
v_

es
c

(a)

101 102 103 104 105 106 107 108

time [yr]

2

4

6

8

10

v/
v_

es
c

(b)

101 102 103 104 105 106 107 108

time [yr]

10 5

10 4

10 3

10 2

10 1

100

wa
te

r l
os

s

(c) 10−5 ∧
= 0 (due to log-log plot)

101 102 103 104 105 106 107 108

time [yr]

10 11

10 9

10 7

10 5

10 3

10 1
co

re
 lo

ss

(d)

101 102 103 104 105 106 107 108

time [yr]

0

20

40

60

80

im
pa

ct
 a

ng
le

 [d
eg

]

(e)

0 15 30 45 60 75 90
impact angle [deg]

0

50

100

150

200

250

300

Co

llis
io

ns

(f)

Figure 5.8: Statistics over all collisions that occurred in the simulations.

32

6 Discussion and Conclusions

6 Discussion and Conclusions

As mentioned in the introduction, water transport is an important process during the late stages of
terrestrial planetary formation. It determines the amount of water that can be found on the planets
in a solar system, and we expect it to be strongly affected by the details of how we model the loss of
water in the collisions of protoplanetary embryos and planetesimals. When looking at the results of our
simulation setup, we can confirm the primary result of ChB, namely that assuming no water or other
mass will be lost in collisions and that bodies are merged perfectly is a large oversimplification. It causes
planets to be more massive and water rich and slightly more common. When looking at the exact values
of Tables 5.1 and 5.2 to compare our final parameters of the solar systems with the ones from ChB, we
can see that while the results in the perfect merging cases differ in our simulations, possibly because of
the slightly different simulation setup, the influence of the mass loss estimation methods introduced
in this thesis on the simulation outcomes is rather similar. We can also reproduce other effects, like
the fact that most planets first accrete their mass while staying dry until one or a few major collisions
deliver a large fraction of the final water content (Figure 5.5). Our model also correctly displays the fact
that early collisions are weaker and have far less water loss than collisions in the final stages of planetary
formation (Figure 5.8c).

As we are not comparing multiple N-Body setups, we can afford to run more simulations per method (40,
20 or 18 depending on the method compared to 5 in ChB). As the outcomes of the N-Body simulations are
always strongly affected by the chaotic effects of gravitational interactions, this allows to see the influence
of the specific mass loss estimation methods more clearly in comparison. Nevertheless, the standard
deviations of all simulation outcomes in Table 5.1 are consistently higher in our work. One possible
explanation for this is that there is no ‘true value’ for e.g. Mplanets that we would converge to if we ran
orders of magnitude more simulations. Instead, both the large influence minor differences in singular
collision events can have on the outcome and the fact that our initial conditions are randomized mean
that there is a wider range of possible formed solar systems at the end of our simulations. Additionally,
if we only run a very small amount of simulations, the standard deviation might just appear smaller, as
we are unable to cover the full extent of possible formed solar systems. This can be seen when comparing
the RBF results with the ones from RMF_SM, which is just the first 20 simulations of RBF.

In contrast, the simulation setup of this thesis has a major limitation compared to ChB: Every single
collision between two bodies results in them merging and creating a new body (even if we consider
the mass lost during this process). But with an impact angle high enough, it might be possible that
both bodies lose mass without merging, but rather continue their trajectory independently. These
Hit-and-Run collisions are not unlikely, but slow down the formation process when considered properly
as they don’t reduce the number of collisions. In ChB, this causes the accretion time to be nearly
doubled while in our results the speed of accretion is hardly affected. This means that while the final
simulation outcome might be comparable, the time at which it is reached is far too early. In a future
work, our approach could be extended to also correctly handle Hit-and-Run scenarios. For this, the
mass ratio between the two most massive bodies after the collision would also need to be estimated
(the work for this is already started in Section 4.4). We would also need to find a way to estimate the
orbital parameters of the two resulting bodies (potentially similar to Emsenhuber et al. 2020), as just
using conservation of momentum is no longer enough to define their resulting velocities. This could be
brought even further by including the results of the ongoing work of Winter et al. 2022, in which more
complex neural networks are used to not just estimate the output from the input, but also model the
whole process in-between more accurately.

Still, the approach of estimating collision outcomes based on existing datasets has the major advantage of
being easier to implement and faster by orders of magnitude to run per collision (even though this might
not be as relevant considering the very long run times of the N-Body simulation itself). Also, it does not
depend on the availability of GPUs which are needed to run the SPH-based collision simulations using

33

6 Discussion and Conclusions

miluphcuda. The exact method of estimation (linear interpolation or simple neural network) does not
really matter in comparison to the much larger sources of uncertainties in the N-Body simulation and
SPH setup, as long as they are able to reproduce the original dataset in all input and output variables.

6.1 Data Availability

Most code used in this thesis (both for simulations and analysis of results) is available at https:

//lw1.at/r/masters-thesis-code and the code related to reading the existing dataset of collisions at
https://lw1.at/r/masters-thesis-dataset-code. The raw data from all simulations is available on
request from the author.

6.2 Conclusions

Late stage formation of terrestrial planets is still a topic with many unknown details, in which many
teams try to describe the process as accurately as possible with more and more detailed simulations.
In this thesis, we tried to focus on one particular aspect of this process, the influence of mass and
especially water mass loss during collisions on the formed solar systems. While many existing simulations
simply assume that all mass of two protoplanetary bodies colliding with each other is merged into the
resulting body, higher resolution, SPH-based simulations of individual collisions show that this is only
true for low velocity, low impact angle collisions. As we can reproduce in this thesis, these collisions
are only common in the early stages of simulations with collisions becoming more and more impactful
over time. To make the collision handling more accurate, we need to include the additional knowledge
about collision outcomes into our N-Body simulation of the planetary formation. For this, we created
an alternative method to ChB which uses a dataset of about 10 000 individually resolved collisions
from ChB to estimate the mass loss in our collisions based on their properties. Estimation methods
based on linear interpolation and artificial neural networks are compared with a randomized mass loss
method inspired by ZhL and perfect merging. Using each method, 18–40 simulations are run with initial
conditions corresponding to the late stage of the formation of the solar system. The main results of
these simulations are:

• We can reproduce the fact that a more accurate handling of mass loss in collisions has a strong
influence on the final solar system. Planets are less massive, contain less water and are fewer in
numbers (both inside the potentially habitable zone and in general).

• While the number of bodies decreases and their mass increases strongly in the first 10Myr, it takes
longer for water to be transported into the inner parts of the solar system. Related, most water
is accreted onto the final planets in a small amount of collisions with water rich protoplanetary
embryos.

• Increasing the number of simulations per method helps limit the influence of the chaotic nature of
N-Body simulations and allows giving more precise results.

• Using estimations for the mass loss based on existing SPH-based simulations instead of running
a dedicated simulation for every collision like in ChB seems to give quite comparable results
independently of the exact estimation method.

• The lack of consideration for Hit-and-Run collision scenarios remains a major limitation of this
work and results in too fast accretion, as every collision reduces the number of bodies in the system.

• A modern hybrid integrator like MERCURIUS works very well in this scenario with a long simulation
time where collisions still need to be resolved in a high resolution.

34

https://lw1.at/r/masters-thesis-code
https://lw1.at/r/masters-thesis-code
https://lw1.at/r/masters-thesis-dataset-code

Acknowledgements

• A randomized mass loss similar to ZhL can work, but it is important to use the correct distribution
for the scenario and take the time of collision into consideration as otherwise too much mass is
lost very early, making later processes impossible.

Acknowledgements

I would like to thank everyone who helped me make this thesis possible. Starting with my supervisor
Rudolf Dvorak who made it possible in the first place to write my thesis about this topic and encouraged
me about this work. Thanks also to Christoph Burger for providing the scientific foundation this thesis
builds on and sharing his dataset and many helpful insights. I would also like to thank Hanno Rein
for REBOUND which made the simulation setup of this thesis possible to implement, for helping with
misconceptions and for fixing bugs whenever they were found. Similarly, I would like to thank Thomas
Maindl who first introduced me to the topic of simulating planetary collisions and who gave encouraging
feedback on earlier drafts of this thesis. I also have to thank Markus Rockenbauer and the rest of the
Department of Astrophysics at the University of Vienna for allowing me to use one of their servers for
the long simulation times. And also many thanks to Stefanie Reiter, Simon Schleich and Fridolin Glatter
for proofreading and commenting on this thesis. Finally, I want to thank all of my friends and my family
for supporting me during the time it took me to finish this thesis.

35

List of Figures

2.1 A snapshot of an SPH simulation like the ones used here. The colour indicates the velocity
in the direction of the collision. 7

2.2 The Pearson correlation coefficient between the input parameters and the water mass
fraction. 7

3.1 Minor bodies in first set of initial conditions (see Section 3.5). 9
3.2 Visualization of a collision with α = 20.29◦, v

vesc
= 1.02 and γ = 0.14. 13

3.3 Visualization of the collision angle α (here α = 60◦), based on Figure 1 in ChB. 14

4.1 Interpolation result using Radial Basis Functions. 19
4.2 An example of a simple Neural Network. 19
4.3 Evolution of loss function applied to training and validation dataset during training. . . 21
4.4 Interpolation result using the neural network. 21
4.5 Prediction of the neural network for shell (•), mantle (•) and core (•) compared with

their actual value in the collision dataset. 21

5.1 All final bodies formed after 200Myr simulations. 23
5.2 Number of bodies in the simulations over time. 25
5.3 Total mass in all planetesimals and planetary embryos over time. 26
5.4 Snapshots of four simulation runs at five different times. The size of Jupiter (light green)

is scaled according to its mass like with the other bodies. 27
5.5 Mass and water mass fraction changes of resulting planets over their collision history. . . 28
5.6 Same visualisation as Figure 5.5, but for all simulations of one type. 29
5.7 Collision graph of one of the final planets in the first RBF simulation. 30
5.8 Statistics over all collisions that occurred in the simulations. 32

List of Tables

5.1 Aggregated results and their standard deviation for all remaining bodies per mass loss estimation
method compared with the results from ChB. ‘pot’ refers to the properties of only bodies inside
the potentially habitable zone and ‘water’ to the water mass. M⊕ are Earth masses while Mw,⊕

are Earth water masses. A detailed description of all rows can be found in the text on page 22. 24
5.2 Same as Table 5.1, but showing the minimum and maximum of the range of values. . . . 24

36

List of Code Fragments

List of Code Fragments

3.1 initcon/InitCondGen.py:286-299 (simplified) . 9
3.2 REBOUND: main/src/integrator_mercurius.c:416-424 (1074be9583) 10
3.3 REBOUND: main/src/integrator_mercurius.c:44-54 (1074be9583) 10
3.4 heartbeat/heartbeat.c (simplified) . 11
3.5 utils/radius.py (simplified) . 12

4.1 massloss/perfect_merging.py:6-10 . 16
4.2 massloss/rbf_massloss.py (simplified) . 18
4.3 bac/network.py . 20

37

https://github.com/hannorein/rebound/blob/1074be9583/src/integrator_mercurius.c
https://github.com/hannorein/rebound/blob/1074be9583/src/integrator_mercurius.c

Abbreviations

ChB C. Burger, Á. Bazsó and C. M. Schäfer (Feb. 2020). ‘Realistic collisional water transport during
terrestrial planet formation. Self-consistent modeling by an N-body-SPH hybrid code’. In: A&A
634, A76, A76. doi: 10.1051/0004-6361/201936366. arXiv: 1910.14334 [astro-ph.EP].

ZhL L. Zhou, R. Dvorak and L.-Y. Zhou (Aug. 2021). ‘On the formation of terrestrial planets
between two massive planets: the case of 55 Cancri’. In: MNRAS 505.3, pp. 4571–4585. doi:
10.1093/mnras/stab1534. arXiv: 2105.10105 [astro-ph.EP].

Bibliography

Benz, W. and E. Asphaug (Nov. 1999). ‘Catastrophic Disruptions Revisited’. In: Icarus 142.1, pp. 5–20.
doi: 10.1006/icar.1999.6204. arXiv: astro-ph/9907117 [astro-ph] (cit. on p. 6).

Burger, C., Á. Bazsó and C. M. Schäfer (Feb. 2020). ‘Realistic collisional water transport during
terrestrial planet formation. Self-consistent modeling by an N-body-SPH hybrid code’. In: A&A 634,
A76, A76. doi: 10.1051/0004-6361/201936366. arXiv: 1910.14334 [astro-ph.EP] (cit. on pp. 5, 6,
8–10, 14, 15, 17, 22, 24–26, 33, 34).

Burger, C., T. I. Maindl and C. M. Schäfer (Jan. 2018). ‘Transfer, loss and physical processing of water
in hit-and-run collisions of planetary embryos’. In: Celestial Mechanics and Dynamical Astronomy
130.1, 2, p. 2. doi: 10.1007/s10569-017-9795-3. arXiv: 1710.03669 [astro-ph.EP] (cit. on pp. 6, 12).

Cambioni, S., E. Asphaug et al. (Apr. 2019). ‘Realistic On-the-fly Outcomes of Planetary Collisions:
Machine Learning Applied to Simulations of Giant Impacts’. In: ApJ 875.1, 40, p. 40. doi: 10.3847/1538-
4357/ab0e8a. arXiv: 1903.04507 [astro-ph.EP] (cit. on p. 4).

Cambioni, S., S. A. Jacobson et al. (June 2021). ‘The Effect of Inefficient Accretion on Planetary
Differentiation’. In: The Planetary Science Journal 2.3, 93, p. 93. doi: 10.3847/PSJ/abf0ad. arXiv:
2106.07680 [astro-ph.EP] (cit. on p. 5).

Chambers, J. E. (Apr. 1999). ‘A hybrid symplectic integrator that permits close encounters between
massive bodies’. In: MNRAS 304.4, pp. 793–799. doi: 10.1046/j.1365-8711.1999.02379.x (cit. on
pp. 4, 9, 10).

Du Toit, W. (Mar. 2008). ‘Radial basis function interpolation’. MA thesis. Stellenbosch: Stellenbosch
University. url: https://scholar.sun.ac.za/handle/10019.1/2002 (cit. on p. 17).

Eakins, B. W. and G. F. Sharman (2010). Volumes of the World’s Oceans from ETOPO1. NOAA
National Geophysical Data Center, Boulder, CO. url: https://www.ngdc.noaa.gov/mgg/global/
etopo1_ocean_volumes.html (visited on 01/01/2022) (cit. on p. 22).

Emsenhuber, A. et al. (Mar. 2020). ‘Realistic On-the-fly Outcomes of Planetary Collisions. II. Bringing
Machine Learning to N-body Simulations’. In: ApJ 891.1, 6, p. 6. doi: 10.3847/1538-4357/ab6de5.
arXiv: 2001.00951 [astro-ph.EP] (cit. on pp. 4, 33).

Haghighipour, N. and T. I. Maindl (Jan. 2022). ‘Building Terrestrial Planets: Why results of perfect-
merging simulations are not quantitatively reliable approximations to accurate modeling of terrestrial
planet formation’. In: arXiv e-prints. arXiv: 2201.06702 [astro-ph.EP]. Pre-published (cit. on p. 5).

38

https://doi.org/10.1051/0004-6361/201936366
https://arxiv.org/abs/1910.14334
https://doi.org/10.1093/mnras/stab1534
https://arxiv.org/abs/2105.10105
https://doi.org/10.1006/icar.1999.6204
https://arxiv.org/abs/astro-ph/9907117
https://doi.org/10.1051/0004-6361/201936366
https://arxiv.org/abs/1910.14334
https://doi.org/10.1007/s10569-017-9795-3
https://arxiv.org/abs/1710.03669
https://doi.org/10.3847/1538-4357/ab0e8a
https://doi.org/10.3847/1538-4357/ab0e8a
https://arxiv.org/abs/1903.04507
https://doi.org/10.3847/PSJ/abf0ad
https://arxiv.org/abs/2106.07680
https://doi.org/10.1046/j.1365-8711.1999.02379.x
https://scholar.sun.ac.za/handle/10019.1/2002
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://doi.org/10.3847/1538-4357/ab6de5
https://arxiv.org/abs/2001.00951
https://arxiv.org/abs/2201.06702

Bibliography

Hayashi, C. (Jan. 1981). ‘Structure of the Solar Nebula, Growth and Decay of Magnetic Fields and
Effects of Magnetic and Turbulent Viscosities on the Nebula’. In: Progress of Theoretical Physics
Supplement 70, pp. 35–53. doi: 10.1143/PTPS.70.35 (cit. on p. 4).

Izidoro, A., A. Morbidelli and S. N. Raymond (Oct. 2014). ‘Terrestrial Planet Formation in the Presence
of Migrating Super-Earths’. In: ApJ 794.1, 11, p. 11. doi: 10.1088/0004-637X/794/1/11. arXiv:
1408.1215 [astro-ph.EP] (cit. on p. 4).

Kingma, D. P. and J. Ba (2015). ‘Adam: A Method for Stochastic Optimization’. In: 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings. Ed. by Y. Bengio and Y. LeCun. arXiv: 1412.6980 (cit. on p. 20).

Kopparapu, R. K. et al. (Mar. 2013). ‘Habitable Zones around Main-sequence Stars: New Estimates’. In:
ApJ 765.2, 131, p. 131. doi: 10.1088/0004-637X/765/2/131. arXiv: 1301.6674 [astro-ph.EP] (cit. on
p. 22).

Lécuyer, C., P. Gillet and F. Robert (1998). ‘The hydrogen isotope composition of seawater and
the global water cycle’. In: Chemical Geology 145.3, pp. 249–261. issn: 0009-2541. doi: https :

//doi.org/10.1016/S0009-2541(97)00146-0 (cit. on p. 22).
Leinhardt, Z. M. and S. T. Stewart (Jan. 2012). ‘Collisions between Gravity-dominated Bodies. I.

Outcome Regimes and Scaling Laws’. In: ApJ 745.1, 79, p. 79. doi: 10.1088/0004-637X/745/1/79.
arXiv: 1106.6084 [astro-ph.EP] (cit. on p. 4).

Martin, R. G. and M. Livio (Sept. 2012). ‘On the evolution of the snow line in protoplanetary discs’. In:
MNRAS 425.1, pp. L6–L9. doi: 10.1111/j.1745-3933.2012.01290.x. arXiv: 1207.4284 [astro-ph.EP]

(cit. on p. 4).
Melosh, H. J. (1989). Impact Cratering: A Geologic Process. New York: Oxford University Press. isbn:

9780195042849 (cit. on p. 6).
Morbidelli, A. et al. (Nov. 2000). ‘Source regions and time scales for the delivery of water to Earth’. In:

Meteoritics & Planetary Science 35.6, pp. 1309–1320. doi: 10.1111/j.1945-5100.2000.tb01518.x
(cit. on p. 4).

Mustill, A. J., M. B. Davies and A. Johansen (Aug. 2018). ‘The dynamical evolution of transiting
planetary systems including a realistic collision prescription’. In: MNRAS 478.3, pp. 2896–2908. doi:
10.1093/mnras/sty1273. arXiv: 1708.08939 [astro-ph.EP] (cit. on p. 4).

Nair, V. and G. E. Hinton (2010). ‘Rectified Linear Units Improve Restricted Boltzmann Machines’. In:
Proceedings of the 27th International Conference on International Conference on Machine Learning.
ICML’10. Haifa, Israel: Omnipress, pp. 807–814. isbn: 9781605589077. url: https://dl.acm.org/
doi/10.5555/3104322.3104425 (cit. on p. 20).

O’Brien, D. P., A. Morbidelli and H. F. Levison (Sept. 2006). ‘Terrestrial planet formation with strong
dynamical friction’. In: Icarus 184.1, pp. 39–58. doi: 10.1016/j.icarus.2006.04.005 (cit. on p. 4).

Oró, J. (1961). ‘Comets and the formation of biochemical compounds on the primitive Earth’. In: Nature
190.4774, pp. 389–390 (cit. on p. 4).

Owen, T. C. and A. Bar-Nun (Aug. 2001). ‘Contributions of Icy Planetesimals to the Earth’s Early
Atmosphere’. In: Origins of Life and Evolution of the Biosphere 31, pp. 435–458. doi: 10.1023/A:
1011809412925 (cit. on p. 4).

Paszke, A. et al. (2019). ‘PyTorch: An Imperative Style, High-Performance Deep Learning Library’. In:
Advances in Neural Information Processing Systems 32. Ed. by H. Wallach et al. Curran Associates,
Inc., pp. 8024–8035. url: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-
high-performance-deep-learning-library.pdf (cit. on p. 20).

Podolak, M. and S. Zucker (Nov. 2004). ‘A note on the snow line in protostellar accretion disks’. In:
Meteoritics & Planetary Science 39.11, pp. 1859–1868. doi: 10.1111/j.1945-5100.2004.tb00081.x
(cit. on p. 4).

Raymond, S. N., T. Quinn and J. I. Lunine (Mar. 2004). ‘Making other earths: dynamical simulations of
terrestrial planet formation and water delivery’. In: Icarus 168.1, pp. 1–17. doi: 10.1016/j.icarus.
2003.11.019. arXiv: astro-ph/0308159 [astro-ph] (cit. on p. 8).

– (Aug. 2006). ‘High-resolution simulations of the final assembly of Earth-like planets I. Terrestrial
accretion and dynamics’. In: Icarus 183.2, pp. 265–282. doi: 10.1016/j.icarus.2006.03.011. arXiv:
astro-ph/0510284 [astro-ph] (cit. on p. 4).

39

https://doi.org/10.1143/PTPS.70.35
https://doi.org/10.1088/0004-637X/794/1/11
https://arxiv.org/abs/1408.1215
https://arxiv.org/abs/1412.6980
https://doi.org/10.1088/0004-637X/765/2/131
https://arxiv.org/abs/1301.6674
https://doi.org/https://doi.org/10.1016/S0009-2541(97)00146-0
https://doi.org/https://doi.org/10.1016/S0009-2541(97)00146-0
https://doi.org/10.1088/0004-637X/745/1/79
https://arxiv.org/abs/1106.6084
https://doi.org/10.1111/j.1745-3933.2012.01290.x
https://arxiv.org/abs/1207.4284
https://doi.org/10.1111/j.1945-5100.2000.tb01518.x
https://doi.org/10.1093/mnras/sty1273
https://arxiv.org/abs/1708.08939
https://dl.acm.org/doi/10.5555/3104322.3104425
https://dl.acm.org/doi/10.5555/3104322.3104425
https://doi.org/10.1016/j.icarus.2006.04.005
https://doi.org/10.1023/A:1011809412925
https://doi.org/10.1023/A:1011809412925
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1111/j.1945-5100.2004.tb00081.x
https://doi.org/10.1016/j.icarus.2003.11.019
https://doi.org/10.1016/j.icarus.2003.11.019
https://arxiv.org/abs/astro-ph/0308159
https://doi.org/10.1016/j.icarus.2006.03.011
https://arxiv.org/abs/astro-ph/0510284

Bibliography

Rein, H., D. M. Hernandez et al. (June 2019). ‘Hybrid symplectic integrators for planetary dynamics’.
In: MNRAS 485.4, pp. 5490–5497. doi: 10.1093/mnras/stz769. arXiv: 1903.04972 [astro-ph.EP]

(cit. on pp. 9, 10).
Rein, H. and S.-F. Liu (Jan. 2012). ‘REBOUND: an open-source multi-purpose N-body code for collisional

dynamics’. In: A&A 537, A128, A128. doi: 10.1051/0004-6361/201118085. arXiv: 1110.4876 [astro-

ph.EP] (cit. on pp. 5, 9).
Rein, H. and D. S. Spiegel (Jan. 2015). ‘IAS15: a fast, adaptive, high-order integrator for gravitational

dynamics, accurate to machine precision over a billion orbits’. In: MNRAS 446.2, pp. 1424–1437. doi:
10.1093/mnras/stu2164. arXiv: 1409.4779 [astro-ph.EP] (cit. on p. 9).

Rein, H. and D. Tamayo (Sept. 2015). ‘WHFAST: a fast and unbiased implementation of a symplectic
Wisdom-Holman integrator for long-term gravitational simulations’. In: MNRAS 452.1, pp. 376–388.
doi: 10.1093/mnras/stv1257. arXiv: 1506.01084 [astro-ph.EP] (cit. on p. 9).

– (May 2017). ‘A new paradigm for reproducing and analyzing N-body simulations of planetary systems’.
In: MNRAS 467.2, pp. 2377–2383. doi: 10.1093/mnras/stx232. arXiv: 1701.07423 [astro-ph.EP]

(cit. on p. 14).
Rubin, M. et al. (Apr. 2015). ‘Molecular nitrogen in comet 67P/Churyumov-Gerasimenko indicates a low

formation temperature’. In: Science 348.6231, pp. 232–235. doi: 10.1126/science.aaa6100 (cit. on
p. 4).

Schäfer, C. M., S. Riecker et al. (May 2016). ‘A smooth particle hydrodynamics code to model collisions
between solid, self-gravitating objects’. In: A&A 590, A19, A19. doi: 10.1051/0004-6361/201528060.
arXiv: 1604.03290 [astro-ph.EP] (cit. on p. 6).

Schäfer, C. M., O. J. Wandel et al. (2020). ‘A versatile smoothed particle hydrodynamics code for graphic
cards’. In: Astronomy and Computing 33, p. 100410. issn: 2213-1337. doi: 10.1016/j.ascom.2020.
100410. url: https://www.sciencedirect.com/science/article/pii/S2213133720300640 (cit. on
p. 6).

Stadel, J. G. (Jan. 2001). ‘Cosmological N-body simulations and their analysis’. PhD thesis. University
of Washington, United States. url: http://carma.astro.umd.edu/nemo/pitp/papers/Stadel2001-
thesis.ps (cit. on p. 4).

Stewart, S. T. and Z. M. Leinhardt (May 2012). ‘Collisions between Gravity-dominated Bodies. II. The
Diversity of Impact Outcomes during the End Stage of Planet Formation’. In: ApJ 751.1, 32, p. 32.
doi: 10.1088/0004-637X/751/1/32. arXiv: 1109.4588 [astro-ph.EP] (cit. on p. 4).

Tsiganis, K. et al. (May 2005). ‘Origin of the orbital architecture of the giant planets of the Solar System’.
In: Nature 435.7041, pp. 459–461. doi: 10.1038/nature03539 (cit. on p. 9).

Virtanen, P. et al. (2020). ‘SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python’. In:
Nature Methods 17, pp. 261–272. doi: 10.1038/s41592-019-0686-2 (cit. on p. 18).

Winkler, L. (1st Sept. 2019). ‘Interpolated water retention after two-body collisions using Neural
Networks and linear interpolation methods’. English. BA thesis. University of Vienna. 19 pp. url:
https://lw1.at/s/astro/Bachelorarbeit.pdf (cit. on pp. 17, 19).

Winter, P. M. et al. (2022). ‘Residual Neural Networks for the Prediction of Planetary Collision Outcomes’.
In preparation (cit. on p. 33).

Zhou, L., R. Dvorak and L.-Y. Zhou (Aug. 2021). ‘On the formation of terrestrial planets between two
massive planets: the case of 55 Cancri’. In: MNRAS 505.3, pp. 4571–4585. doi: 10.1093/mnras/stab1534.
arXiv: 2105.10105 [astro-ph.EP] (cit. on pp. 5, 16, 22, 31, 34, 35).

40

https://doi.org/10.1093/mnras/stz769
https://arxiv.org/abs/1903.04972
https://doi.org/10.1051/0004-6361/201118085
https://arxiv.org/abs/1110.4876
https://arxiv.org/abs/1110.4876
https://doi.org/10.1093/mnras/stu2164
https://arxiv.org/abs/1409.4779
https://doi.org/10.1093/mnras/stv1257
https://arxiv.org/abs/1506.01084
https://doi.org/10.1093/mnras/stx232
https://arxiv.org/abs/1701.07423
https://doi.org/10.1126/science.aaa6100
https://doi.org/10.1051/0004-6361/201528060
https://arxiv.org/abs/1604.03290
https://doi.org/10.1016/j.ascom.2020.100410
https://doi.org/10.1016/j.ascom.2020.100410
https://www.sciencedirect.com/science/article/pii/S2213133720300640
http://carma.astro.umd.edu/nemo/pitp/papers/Stadel2001-thesis.ps
http://carma.astro.umd.edu/nemo/pitp/papers/Stadel2001-thesis.ps
https://doi.org/10.1088/0004-637X/751/1/32
https://arxiv.org/abs/1109.4588
https://doi.org/10.1038/nature03539
https://doi.org/10.1038/s41592-019-0686-2
https://lw1.at/s/astro/Bachelorarbeit.pdf
https://doi.org/10.1093/mnras/stab1534
https://arxiv.org/abs/2105.10105

	Abstract
	Zusammenfassung
	Introduction
	SPH-based collision simulation
	Simulation Setup
	Initial Conditions
	N-Body Integrator
	Hybrid Integrator
	Ejections and Solar Encounters
	Radii

	Collision Handling
	Output Management
	Reproducibility

	Scenarios

	Mass Loss Estimation
	Perfect Merging
	Randomized Mass Loss
	RBF-based Mass Loss Estimation
	Neural Network Mass Loss Estimation

	Results
	Randomized Mass Loss

	Discussion and Conclusions
	Data Availability
	Conclusions

	Acknowledgements
	List of Figures
	List of Tables
	List of Code Fragments
	Abbreviations
	Bibliography

